Rabbit antibody to TRPM6

Code	OST00239W
ID Tag	Rb3093-180617-WS
Unit size	100 ul
Immunogen	A synthetic peptide from mouse TRPM6 conjugated to blue carrier protein was used as the antigen.
Conjugate	Unconjugated antibody
Also known	Transient receptor potential cation channel subfamily M member 6, channel kinase 2 , melastatin-related TRP cation channel 6, CHAK2, HSH, HMGX, HOMG, HOMG1
Host	NZ white rabbit
Purity	Whole serum
Clonality	Polyclonal
Isotype	Polyclonal, whole serum
Applications	IHC, WB. A dilution of $1: 1000$ is recommended for WB and 1:500 for IHC-P. The optimal dilution should be determined by the end user. Not yet tested in other applications.
Specificity	Specific for TRPM6.
Spcs X-react.	Mouse. Other species not yet tested.
Format	Lyophilised
Reconstitution	Reconstitute in 100 ul of sterile water. Centrifuge to remove any insoluble material.
Storage	Maintain the lyophilised/reconstituted antibodies frozen at -20C for long term storage and refrigerated at $2-8 \mathrm{C}$ for a shorter term. When reconstituting, glycerol (1:1) may be added for an additional stability. Avoid freeze and thaw cycles.
Expiry Date	12 months after reconstitution
Shipping	This item will be shipped to you at ambient temperature in a lyophilised form.
Limitation	For research use only
IHC-P on paraffin sections of mouse kidney. The animal was perfused using Autoperfuser at a pressure of 130 mmHg with $300 \mathrm{ml} 4 \%$ FA being processed for paraffin embedding. HIER: Tris-EDTA, pH 9 for 20 min using Thermo PT Module. Blocking: 0.2% LFDM in TBST filtered thru $0.2 \mu \mathrm{~m}$. Detection was done using Novolink HRP polymer from Leica following manufacturers instructions; DAB chromogen: Candela DAB chromogen from Osenses. Primary antibody: dilution 1:500, incubated 30 min at RT using Autostainer. Sections were counterstained with Harris Hematoxylin.	

